Detecting and Classifying Olive Leaf Pests and Diseases Using Optimal Deep Learning Techniques

Ali Elrowayati (1) , Yasir Swayeb (2) , Mohammed Baltu (3)
(1) Deptarment of Electronic Engineering, College of Industrial Technology, Misurata, Libya ,
(2) Faculty of Information Technology, Misurata University, Libya ,
(3) Faculty of Information Technology, Misurata University, Libya

Abstract

Agricultural advancements in technology and AI are transforming disease and pest control, boosting crop productivity. Classifying olive tree ailments is a challenge. Traditional methods are insufficient, requiring farmers and even experts to invest significant time and effort in manual identification. This paper explores CNNs for olive disease and pest classification. We experimented on two datasets: a local one from Libya with healthy leaves, olive fly, and jasmine moth (4,170 samples) and a public GitHub dataset with healthy leaves, rust mite blight, and peacock eye disease (6,961 samples). We compared pre-trained and untrained CNN models, finding the pre-trained Xception model achieved the highest local data accuracy (99%). Interestingly, the best-untrained model also excelled on local data (95%). The study further explored the impact of optimization algorithms (Adam and SGD), with Adam consistently achieving superior accuracy on both datasets.

Full text article

Generated from XML file

References

- S. Kaur, S. Pandey, and S. Goel, “Plants Disease Identification and Classification Through Leaf Images: A Survey,” Arch. Comput. Methods Eng., vol. 26, no. 2, pp. 507–530, Apr. 2019, doi: 10.1007/S11831-018-9255-6.

- R. D’Andria, A. Lavini, A. Tombesi, S. Saavedra, and تركي، محمد علي ، تقنيات الانتاج في زيت الزيتون، الطبعة الأولى ، مدريد ،2007

- K. Aggarwal et al., “Has the future started? The current growth of artificial intelligence, machine learning, and deep learning,” Iraqi J. Comput. Sci. Math., 2022, doi: 10.52866/ijcsm.2022.01.01.013.

- S. Vaid, R. Kalantar, and M. Bhandari, “Deep learning COVID-19 detection bias: accuracy through artificial intelligence,” Int. Orthop., vol. 44, no. 8, pp. 1539–1542, Aug. 2020, doi: 10.1007/S00264-020-04609-7.

- إبراهيم، عاطف محمد، حجاج، محمد نظيف، شجرة الزيتون: زراعتها ورعايتها وإنتاجها، الطبعة الأولى، منشأة المعارف،2007.

- [جمال، محمد حسني، السوسو، مواهب، مورفولوجيا وتصنيف شجرة الزيتون، 2016. https://almerja.com/reading.php?i=1&ida=1437&id=706&idm=50927 (accessed Jun. 08, 2024).

- Karn and Ujjwal, “An intuitive explanation of convolutional neural networks,” data Sci. blog, 2016, Accessed: Jun. 06, 2024. [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=7.%09Karn%2C+U.+%282016%29.+An+intuitive+explanation+of+convolutional+neural+networks.+The+data+science+blog&btnG=.

- S. Sakib, N. Ahmed, A. Kabir, and H. Ahmed, “An overview of convolutional neural network: Its architecture and applications,” Preprints, 2019, [Online]. Available: https://www.preprints.org/manuscript/201811.0546.

- C. Li, Z. Zhang, and W. Lee, “Convolutional sequence to sequence model for human dynamics,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5226–5234, [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2018/html/Li_Convolutional_Sequence_to_CVPR_2018_paper.html.

- A. R. Muslikh, D. D. R. I. Setiadi, and A. Ojugo, “Rice Disease Recognition using Transfer Learning Xception Convolutional Neural Network,” jJurnal Tek. Inform., vol. 4, no. 6, pp. 1541–1547, 2023.

- S. Uğuz and N. Uysal, “Classification of olive leaf diseases using deep convolutional neural networks,” Neural Comput. Appl., vol. 33, no. 9, pp. 4133–4149, May 2021, doi: 10.1007/S00521-020-05235-5.

- A. Ksibi, M. Ayadi, B. O. Soufiene, M. M. Jamjoom, and Z. Ullah, “MobiRes-net: a hybrid deep learning model for detecting and classifying olive leaf diseases,” Appl. Sci., vol. 12, no. 20, p. 10278, 2022.

- Alshammari, H., Gasmi, K., Krichen, M., Ammar, L. B., Abdelhadi, M. O., Boukrara, A., & Mahmood, M. A. (2022). Optimal deep learning model for olive disease diagnosis based on an adaptive genetic algorithm. Wireless Communications and Mobile Computing, 2022, 1-13.

- Alshammari, Hamoud H., Ahmed I. Taloba, and Osama R. Shahin. "Identification of olive leaf disease through optimized deep learning approach." Alexandria Engineering Journal 72 (2023): 213-224.

- Bocca, Pedro, Adrian Orellana, Carlos Soria, and Ricardo Carelli. "On field disease detection in olive tree with vision systems." Array 18 (2023): 100286.

- Diker, A., Elen, A., Közkurt, C. et al. An effective feature extraction method for olive peacock eye leaf disease classification. Eur Food Res Technol 250, 287–299 (2024). https://doi.org/10.1007/s00217-023-04386-8.

- Dozat, Timothy. "Incorporating Nesterov Momentum into Adam." (2016).

- Novaković, Jasmina Dj, Alempije Veljović, Siniša S. Ilić, Željko Papić, and Milica Tomović. "Evaluation of classification models in machine learning." Theory and Applications of Mathematics & Computer Science 7, no. 1 (2017): 39.

- Vujović, Ž. "Classification model evaluation metrics." International Journal of Advanced Computer Science and Applications 12, no. 6 (2021): 599-606.

- Beauxis-Aussalet, Emma, and Lynda Hardman. "Simplifying the visualization of confusion matrix." In 26th Benelux conference on artificial intelligence (BNAIC). 2014.

Authors

Ali Elrowayati
elrowayati@yahoo.com (Primary Contact)
Yasir Swayeb
Mohammed Baltu
Elrowayati ع., Swayeb ي., & Baltu م. (2024). Detecting and Classifying Olive Leaf Pests and Diseases Using Optimal Deep Learning Techniques. Journal of Pure & Applied Sciences, 23(2), 167–177. https://doi.org/10.51984/jopas.v23i2.3441

Article Details

Capsule Network Implementation On FPGA

Salim A. Adrees , Ala A. Abdulrazeg
Abstract View : 306
Download :494