Computing Poincaré map for One Parameter Pulsed Dipole System Using Hénon Trick

Ibrahim Alsendid (1)
(1) Mathematics Department, Faculty of Science, Sebha University, Sebha, Libya

Abstract

For a trajectory generated by dynamical systems, Hénon has presented a method called the Hénon trick or Hénon method. In this method, a surface of a section (Poincaré surface) is defined, and the Poincaré map (i.e., the trajectory points distributed on it) is collected when the trajectory crosses the Poincaré surface. Whenever the Hénon trick is used to calculate the Poincaré map, the autonomous chaotic system's trajectory deviates from the original path, causing a deformation in its attractor. In this paper, the Hénon trick is discussed to calculate the Poincaré map for the attractor Lorenz system, after which a 1-parameter pulsed dipole (source-sink pairs) model is defined on an unbounded domain, and a Python data science code is built to plot the results. The paper provided a reformed Hénon trick to calculate the Poincaré map for a 1-parameter pulsed dipole model by defining a cross-section (Poincaré surface), then I calculate the Poincaré map of the intersection points between this cross-section and the streamlines generated by that pulsed dipole model. The Poincaré map is important to investigate the uniformity of the distribution of streamlines generated by the pulsed dipole system.

Full text article

Generated from XML file

References

Hénon, M. (1982). On the numerical computation of Poincaré maps. Physica D: Nonlinear Phenomena, 5(2-3), 412-414. DOI: https://doi.org/10.1016/0167-2789(82)90034-3

Palaniyandi, P. (2009). On computing Poincaré map by Hénon method. Chaos, Solitons & Fractals, 39(4), 1877-1882. DOI: https://doi.org/10.1016/j.chaos.2007.06.118

Jones, S. W., & Aref, H. (1988). Chaotic advection in pulsed source–sink systems. The Physics of fluids, 31(3), 469-485. DOI: https://doi.org/10.1063/1.866828

Domínguez-Tenreiro, R., Roy, L. J., & Martinez, V. J. (1992). On the multifractal character of the Lorenz attractor. Progress of theoretical physics, 87(5), 1107-1118. DOI: https://doi.org/10.1143/ptp/87.5.1107

Pinsky, T., (2024). New Knots in the Lorenz Equations. Notices of the American Mathematical Society, 71(10). DOI: https://doi.org/10.1090/noti3060

Macek, Wies law M (2012). “Fractals and Multifractals”. In: Courses at Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland.

Hirsch, Morris W, Smale, Stephen and Devaney, Robert L (2012). Differential equations, dynamical systems, and an introduction to chaos. Academic press. DOI: https://doi.org/10.1016/B978-0-12-382010-5.00015-4

Yan, T., Alhazmi, M., Youssif, M.Y., Elhag, A.E., Aljohani, A.F. and Saber, S., 2024. Analysis of a Lorenz model using adomian decomposition and fractal-fractional operators. Thermal Science, 28(6 Part B), pp.5001-5009. DOI: https://doi.org/10.2298/TSCI2406001Y

Falconer, K. (2014). Fractal geometry: mathematical foundations and applications. John Wiley & Sons.

Hertzsch, J. M., Sturman, R., & Wiggins, S. (2007). DNA microarrays: design principles for maximizing ergodic, chaotic mixing. Small, 3(2), 202-218. DOI: https://doi.org/10.1002/smll.200600361

Stremler, M. A., & Cola, B. A. (2004). Chaotic Advection and Mixing in Pulsed Source-Sink Systems. XXI ICTAM, Warsaw, Poland, Aug. 15, 21.

Authors

Ibrahim Alsendid
ibr.alsendid@sebhau.edu.ly (Primary Contact)
Author Biography

Ibrahim Alsendid, Mathematics Department, Faculty of Science, Sebha University, Sebha

القسم: الرياضيات

التخصص: الهندسة - الهندسة التفاضلية - الهندسة الغير منتظمة (فراكتالز - كسيريات) - الرياضيات التطبيقية.

الدرجة العلمية: محاضر

 

Alsendid, I. (2025). Computing Poincaré map for One Parameter Pulsed Dipole System Using Hénon Trick. Journal of Pure & Applied Sciences, 24(3), 14–17. https://doi.org/10.51984/jopas.v24i3.3878

Article Details

No Related Submission Found