Calculation of Sun Protection Factor (SPF) Values for Selected Organic Filters Using a UV Spectrophotometer

Fathia Mosa (1) , Ali Nagi (2) , Managi Ali (3) , Shahd Muftah (4) , Amira Ismael (5)
(1) Department of Chemistry, Science faculty, Sirte University, Sirte, Libya ,
(2) Department of chemistry, Faculty of Science, Sirte University, Sirte, Libya ,
(3) Department of chemistry, Faculty of Science, Sirte University, Sirte, Libya ,
(4) Department of chemistry, Faculty of Science, Sirte University, Sirte, Libya ,
(5) Department of chemistry, Faculty of Science, Sirte University, Sirte, Libya

Abstract

This study analytically investigated the ultraviolet (UV) absorption characteristics of various organic UV filters containing a benzoyl or benzylidene group, using a double-beam UV–Vis spectrophotometer to measure their absorbance. Additionally, the sun protection factor (SPF) of these compounds was calculated using Mansur’s equation—a critical metric for assessing their effectiveness against harmful UV radiation. Absorbance measurements were conducted over the wavelength range of 290 to 320 nm in methanol, focusing on organic acid salts such as sodium benzoate, sodium salicylate, and ammonium benzoate, as well as organic acids and aldehydes. The results demonstrated that the organic filters provided varying levels of UV protection. The highest SPF value recorded was 54.5 for 4-methoxybenzaldehyde, followed by benzophenone at 44.6, trans-cinnamaldehyde at 41.4, and cinnamic acid at 39.3. These data suggest that benzoyl derivatives with conjugated double bonds exhibit significantly greater UV absorption than benzoic acid and salicylic acid, which displayed relatively modest SPF values. In light of these findings, it is recommended that benzophenone, trans-cinnamaldehyde, and cinnamic acid be considered for incorporation into sunscreen formulations due to their demonstrated efficacy in UV protection.

Full text article

Generated from XML file

References

. Nitulescu, G., Lupuliasa, D., Adam-Dima, I., & Nitulescu, G. M. (2023). Ultraviolet filters for cosmetic applications. Cosmetics, 10, 101. DOI: https://doi.org/10.3390/cosmetics10040101

. Ekstein, S. F., & Hylwa, S. (2023). Sunscreens: a review of UV filters and their allergic potential. Dermatitis®, 34, 176-190. DOI: https://doi.org/10.1097/DER.0000000000000963

. Chavda, V. P., Acharya, D., Hala, V., Daware, S., & Vora, L. K. (2023). Sunscreens: A comprehensive review with the application of nanotechnology. Journal of Drug Delivery Science and Technology, 86, 104720. DOI: https://doi.org/10.1016/j.jddst.2023.104720

. Yehia, H. M. A. A. S. (2024). The Effect of Octa H on Absorbing Harmful UVC Rays and Producing UVB Instead: Beneficial Implications for Human Health and the Environment. American Journal of Cancer, 11, 1-5.

. Song, S., Li, F., Zhao, B., Zhou, M., & Wang, X. (2024). Ultraviolet light causes skin cell senescence: from mechanism to prevention principle. Advanced Biology, 2400090. DOI: https://doi.org/10.1002/adbi.202400090

. Serpone, N., Dondi, D., & Albini, A. (2007). Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica chimica acta, 360, 794-802. DOI: https://doi.org/10.1016/j.ica.2005.12.057

. Kwon, B., & Choi, K. (2021). Occurrence of major organic UV filters in aquatic environments and their endocrine disruption potentials: A mini‐review. Integrated Environmental Assessment and Management, 17, 940-950. DOI: https://doi.org/10.1002/ieam.4449

. Pavlou, P., Siamidi, A., Vlachou, M., & Varvaresou, A. (2021). UV Filters and Their Distribution on the Skin through Safe, Non-Penetrating Vehicles. Journal of Cosmetic Science, 72.

. Wal, P., Shukla, S., Wal, A., & Vig, H. (2022). An updated assessment of the photobiology and photoprotection mechanisms of sunscreens, as well as their regulatory facts. NeuroQuantology, 20, 6075.

. Hanigan, D., Truong, L., Schoepf, J., Nosaka, T., Mulchandani, A., Tanguay, R. L., & Westerhoff, P. (2018). Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens. Water research, 139, 281-290. DOI: https://doi.org/10.1016/j.watres.2018.03.062

. Osterwalder, U., & Herzog, B. (2008). Chemistry and properties of organic and inorganic UV filters. In Clinical guide to sunscreens and photoprotection (pp. 27-54). CRC Press. DOI: https://doi.org/10.3109/9781420080858-5

. Paiva, J. P., Diniz, R. R., Leitao, A. C., Cabral, L. M., Fortunato, R. S., Santos, B. A., & de Padula, M. (2020). Insights and controversies on sunscreen safety. Critical Reviews in Toxicology, 50, 707-723. DOI: https://doi.org/10.1080/10408444.2020.1826899

. Rajan, R. (2024). Clinical Considerations in Sunscreen Use. In Sunscreens for Skin of Color (pp. 311-347). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-97-3195-4_12

. Yarussi-King, K. (2017). Guiding Sunscreen Traffic Across the Globe. Cosmetics & Toiletries, 132, 14-21.

. Olayemi, O., Isimi, C., Ekere, K., Gbate, M. A., & Emeje, M. (2017). Determination of sun protection factor number: An emerging in–vitro tool for predicting UV protection capabilities. Int J Herb Med, 5, 6-9.

. Application of calcium benzoate for preparation of animal feed additive. Retrieved on August 2021 from: https://patents.google.com/patent/WO2017143666A1/en

. Mansur, J. S., Breder, M. N. R., Mansur, M. C. A., Azulay, R. D. (1986) Determinação do fator de proteção solar por espectrofotometria. An. Bras. Dermatol., 61, 121-124.

. Sayre, R. M., Agin, P. P., Levee, G. J., Marlowe, E. (1979) Comparison of in vivo and in vitro testing of sun screening formulas. Photochem Photobiol Oxford., 29, 559-566. DOI: https://doi.org/10.1111/j.1751-1097.1979.tb07090.x

. Dutra, E. A., Oliveira, D. A. G. C., Kedor-Hackmann, E. R. M.; Santoro, M. I. R. M. (2004) Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Braz. J. Pharm. Sci. 40, 381-385. DOI: https://doi.org/10.1590/S1516-93322004000300014

. Carroll, G. T., Turro, N. J., Koberstein, J. T. (2010). Patterning dewetting in thin polymer films by spatially directed photocrosslinking. Journal of Colloid and Interface Science, 351, 556–560. DOI: https://doi.org/10.1016/j.jcis.2010.07.070

. Dorman, G., Prestwich, G. D. (1 May 1994). Benzophenone Photophores in Biochemistry. Biochemistry, 33, 5661–5673. DOI: https://doi.org/10.1021/bi00185a001

. Alfeetouri, O. H., Mosa, F. A. & Jibreel, W. A. (2019) Determination of Sun Protection Factor (SPF) of Some Botanical Oils by Ultraviolet Spectrophotometry, The Libyan Conference on Chemistry and Its Applications (LCCA), 52-58.

. Fathia A. Mosa, Fatima Z. Alsaady, and Hanya I. Naser (2022) Determination of Sun Protection Factor (SPF) Number of Some Aqueous Botanical Extracts by Ultraviolet Spectrophotometry, Journal of Science, 15, 17-24.

. Fathia A. Mosa, Fatima Z. Alsaady, and Hanya I. Naser (2022) Determination of Sun Protection Factor (SPF) Number of Some Aqueous Botanical Extracts by Ultraviolet Spectrophotometry, Journal of Science, 15, 17-23.

. Mosa, F. A., Milad, A., Agailm, M. A., Hadia, R. A., & Khalil, H. H. (2023). Evaluation of Sunscreen Protection Factor Values (SPF) for some Aromatic Acids and their Salts of Mono- and Bivalent Metals by UV Spectrophotometer. Scientific Journal for Faculty of Science-Sirte University, 3, 74–80. https://doi.org/10.37375/sjfssu.v3i2.1401

Authors

Fathia Mosa
fathia@su.edu.ly (Primary Contact)
Ali Nagi
Managi Ali
Shahd Muftah
Amira Ismael
Mosa, F., Nagi, A., Ali, M., Muftah, S., & Ismael, A. (2025). Calculation of Sun Protection Factor (SPF) Values for Selected Organic Filters Using a UV Spectrophotometer. Journal of Pure & Applied Sciences, 24(3), 62–68. https://doi.org/10.51984/jopas.v24i3.3761

Article Details

In-Vitro Evaluation of Sun Protection Factors of Sunscreens Marketed in Sirte by Ultraviolet Spectrophotometry

Himeedah Zayd, Ibrahim Ahmed Alsaeh, Fathia A. Mosa , Gazala Mohamed Ben-Hander
Abstract View : 1143
Download :1564