The stability of eigenvalues and eigenvectors and their impact on differential systems
Abstract
In this article, we apply the stability of eigenvalues and eigenvectors and their impact on differential systems. To achieve this goal, the eigenvalues and eigenvectors are studied and their differential systems, nature in terms of being different real values, compound eigenvalues, or equal eigenvalues.And to identify how to solve linear differential systems with fixed coefficients with the initial condition a complete solution, which depends on the eigenvalues and the corresponding eigenvectors, finding the general solution and the geometry of teigenvectors graphically and the effect of theigenvalues for the three eigenvalues cases, by drawing the paths and the phase plane and clarifying the state of equilibrium contract and stability
Full text article
Authors
Copyright (c) 2022 Journal of Pure & Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
In a brief statement, the rights relate to the publication and distribution of research published in the journal of the University of Sebha where authors who have published their articles in the journal of the university of Sebha should how they can use or distribute their articles. They reserve all their rights to the published works, such as (but not limited to) the following rights:
- Copyright and other property rights related to the article, such as patent rights.
- Research published in the journal of the University of Sebha and used in its future works, including lectures and books, the right to reproduce articles for their own purposes, and the right to self-archive their articles.
- The right to enter a separate article, or for a non-exclusive distribution of their article with an acknowledgment of its initial publication in the journal of Sebha University.
Privacy Statement The names and e-mail addresses entered on the Sabha University Journal site will be used for the aforementioned purposes only and for which they were used.