Using Remote Sensing Technology to Detect Changes in the Vegetation Coverage of the Brak-Ashkada Project based on the Normalized Difference Vegetation Index (NDVI)

Khaled Ben Youssef (1) , Ibraheem Alshareef (2)
(1) Petroleum and Environmental Technologies Department, Environment and Natural Resources,Wadi AlShatti University, Libya ,
(2) Petroleum and Environmental Technologies Department, Environment and Natural Resources,Wadi AlShatti University, Libya

Abstract

The aims of this study to monitor and evaluate the change in vegetation cover for the agricultural settlement project in Barak Ashkada. The study relied on calculating the Normalized Difference Vegetation Index (NDVI) on the Landsat satellite data for April for the years 1988, 2014, and 2022. The density of vegetation cover in the study area is classified into two classes according to NDVI: an area with no vegetation cover (less than 0.11) and an area with a limited too abundant vegetation cover (greater than 0.11). The results showed that there was a difference in the area and density of vegetation cover during the time of interpretation of satellite images, the year 2014 was more dense, and the percentage of vegetation cover was 55.51%, Then came the year 2022 with a vegetation cover rate of 40.41%, and less in the year 1988 with a vegetation cover area rate of 20.99%. This study demonstrates the potential of remote sensing technologies to provide valuable.

Full text article

Generated from XML file

References

بعد ونظم المعلومات الجغرافية. المجلة الافريقية للدراسات المتقدمة في العلوم الإنسانية والاجتماعية. Volume 2, Issue 1, January-March 2023, Page No: 1-15

D. Rivera-Marin, J. Dash, and B. Ogutu, “The use of remote sensing for desertification studies: A review,” J. Arid Environ., vol. 206, no. February, p. 104829, 2022. DOI: https://doi.org/10.1016/j.jaridenv.2022.104829

Y. Hu et al., “Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province,” Sustain., vol. 15, no. 4, 2023. DOI: https://doi.org/10.3390/su15043572

Y. Meng, B. Hou, C. Ding, L. Huang, Y. Guo, and Z. Tang, “Spatiotemporal patterns of planted forests on the Loess Plateau between 1986 and 2021 based on Landsat NDVI time-series analysis,” GIScience Remote Sens., vol. 60, no. 1, 2023. DOI: https://doi.org/10.1080/15481603.2023.2185980

H. Zhang, J. Guo, X. Li, Y. Liu, and T. Wang, “Spatiotemporal Variation in and Responses of the NDVI to Climate in Western Ordos and Eastern Alxa,” Sustain., vol. 15, no. 5, 2023. DOI: https://doi.org/10.3390/su15054375

T. Roßberg and M. Schmitt, “A Globally Applicable Method for NDVI Estimation from Sentinel-1 SAR Backscatter Using a Deep Neural Network and the SEN12TP Dataset,” PFG - J. Photogramm. Remote Sens. Geoinf. Sci., no. 0123456789, 2023. DOI: https://doi.org/10.1007/s41064-023-00238-y

A. Tamás et al., “Assessment of NDVI Dynamics of Maize (Zea mays L.) and Its Relation to Grain Yield in a Polyfactorial Experiment Based on Remote Sensing,” Agriculture, vol. 13, no. 3, p. 689, 2023. DOI: https://doi.org/10.3390/agriculture13030689

F. A. Abdurrhman, “تأثير استخدام مياه الصرف في مشروع براك-أشكدة (فزان،ليبيا)على الموصفات الفسيولوجية لبعض المحاصيل الزراعية,” vol. 2, no. 2, pp. 34–44, 2016. DOI: https://doi.org/10.59743/jmset.v2i2.105

ع. م. حلو and ا. ط. جمعة, “تصنيف-الغطاء-الأرضي-واستعمال-الأرض-في-محافظة-ميسان-باعتماد-بيانات-الاستشعار-عن-بعد-وبطريقة-التصنيف-الهجين.pdf.” جامعة بغداد - كلية الآداب, pp. 519–544, 2018.

Sunardi, A. Fadlil, and J. D. Laspandi, “Design and Development of Calculation System for Normalized Difference in Vegetation Index (NDVI) Using Landsat 8 Satellite Image,” J. Phys. Conf. Ser., vol. 1373, no. 1, 2019. DOI: https://doi.org/10.1088/1742-6596/1373/1/012048

M. V. Degradation, N. East, A. P. Based, and S. Index, “رصد تدهور الغطاء النباتي في الشمال الشرقي من سهل الجفارة حسب المؤشر الطيفي (NDVI) لبيانات القمر الصناعي لاندسات للسنوات (2008-2014-2020),” Sabratha Univ. Sci. J., vol. 5, no. 1, 2021.

A. M. Alghareb, P. Student, L. Academy, B. W. Branch, and B. Walid, “كشف التغيرات الموسمية للطاء النباتي في منطقة بني وليدباستخدام تقنية الاستشعار عن بعد ونظم المعلومات الجغرافية,” African J. Adv. Stud. Humanit. Soc. Sci., vol. 2, no. 1, pp. 1–15, 2023.

T. Staron, “Preparation of oilseed proteins by microbiological methods.,” Rev. Fr. des corps gras. Rev Fr Corps Gras, vol. 22, no. 11/12, pp. 579–589, 1975.

S. Y. Jamal, “Use of Remote Sensing and Vegetation Indices for the Classification of Agricultural Land Uses and Land Cover in the Al-Shinafiya sub District – Iraq,” مجلة الأداب, vol. 31, no. 3, pp. 257–298, 2018.

Authors

Khaled Ben Youssef
k.benyoussef@wau.edu.ly (Primary Contact)
Ibraheem Alshareef
Ben Youssef خ. ع. أ., & Alshareef إ. (2024). Using Remote Sensing Technology to Detect Changes in the Vegetation Coverage of the Brak-Ashkada Project based on the Normalized Difference Vegetation Index (NDVI). Journal of Pure & Applied Sciences, 23(1), 50–54. https://doi.org/10.51984/jopas.v23i1.2845

Article Details

Prevalence and Etiology of Otomycosis in West Libya

Ali Elarabi, Adel Jama, Monira AL-Gorag, Laila Gewili, Maha Farid
Abstract View : 31
Download :9